10 research outputs found

    a smartphone application for supporting the data collection and analysis of the cultural heritage damaged during natural disasters

    Get PDF
    The adverse impacts of natural disasters on lives and livelihoods, as well as regional and local economies, are increasingly evident, and losses to both tangible and intangible cultural heritage due to these disasters pay an important role in the total amount. In fact, damages to sites, structures and artifacts of cultural and historical value, as well as impacts to cultural tourism and the financial resources, produce a strong competitive disadvantage on local communities. Emergency decision making, based on awareness of the suffered damages, can play a crucial role in the attempts of improving resilience of the strategic elements; however, this process typically requires a fast overview on large territories. In this work, we propose a novel framework for obtaining an agile solution to quickly collect and analyze picture galleries and information provided by both internal staff and citizens through commercially available mobile devices. This solution virtually generates a network of information sources during emergency time (e.g., a seismic sequence), and allows to produce a situation map in GIS environment, hence supporting the health status analysis of cultural heritage over time. This paper presents the prototype system composed of: (1) a smartphone application for the acquisition of new information and the examination of existing one; (2) a web-service for exchanging data with databases; and (3) a local service that makes use of a proper piece of software for obtaining a 3D reconstruction from new picture galleries. The proposed system results in a scalable, exportable and modular tool useful during the emergency and for preserving memories of local communities

    InSAR Monitoring of Italian Coastline Revealing Natural and Anthropogenic Ground Deformation Phenomena and Future Perspectives

    Get PDF
    In this work, we use X and C-band SAR data provided by the COSMO-SkyMed and ENVISAT missions to detect and measure some ground deformation phenomena along six coastal areas of Italy. In particular, we exploit multi-temporal interferometric synthetic aperture radar (InSAR), i.e., small baseline subsets (SBAS) and interferometric point target analysis (IPTA) methods, to retrieve the deformation rate maps and time series for each investigated area. Multi-temporal InSAR analysis revealed local subsidence and uplifting effects in Ravenna Coastal Areas, Fiumicino, Campi Flegrei, Sibari Plain, Augusta Bay, and Taranto Gulf. Our work is meant as a demonstrator to show how InSAR-based analysis can provide a detailed understanding of the coastal hazards. Such analysis also opens up new monitoring scenarios such as the possibility of designing a near real-time surveillance service based on Sentinel-1 SAR data.Publishedid 31522T. Deformazione crostale attivaJCR Journa

    Urban Seismic Networks, Structural Health and Cultural Heritage Monitoring: The National Earthquakes Observatory (INGV, Italy) Experience

    Get PDF
    A multiscale approach to the monitoring of earthquakes and their effects can represent an effective tool for the reduction of seismic risk. Devoted monitoring networks are essential to cope with the seismic emergency in urban areas, to assess the damage scenarios, which are useful for the preservation of the strategic functions and services and to improve the community resilience to earthquakes. The National Earthquake Observatory, Italian Institute for Geophysics and Volcanology (ONT-INGV, Italy), has been recently involved in several projects devoted to the reduction of seismic risk by means of the implementation of urban-scale and building-scale monitoring networks. Such systems represent a necessary support for the well-established national seismic network. All these approaches (country, urban, and building scale) could be framed within of a unique system in which each part holds different tasks, with the common final objective of the earthquake risk reduction. In this paper different approaches, experiences and potential capabilities on urban seismic networks, structural health and cultural heritage monitoring implemented in Italy by the ONT-INGV will be presented, with the ultimate goal of achieving an effective integrated multi-scale system.PublishedArticle 1271IT. Reti di monitoraggio e sorveglianzaN/A or not JC

    A S.M.A.R.T. system for the seismic vulnerability mitigation of Cultural Heritages

    Get PDF
    Both assessment and mitigation of seismic vulnerability connected to cultural heritages monitoring are non-trivial issues, based on the knowledge of structural and environmental factors potential impacting the cultural heritage. A holistic approach could be suitable to provide an effective monitoring of cultural heritages within their surroundings at different spatial and temporal scales. On the one hand, the analysis about geometrical and structural properties of monuments is important to assess their state of conservation, their response to external stresses as well as anomalies related to natural and/or anthropogenic phenomena (e.g. the aging of materials, seismic stresses, vibrational modes). On the other hand, the investigation of the surrounding area is relevant to assess environmental properties and natural phenomena (e.g. landslides, earthquakes, subsidence, seismic response) as well as their related impacts on the monuments. Within such a framework, a multi-disciplinary system has been developed and here presented for the monitoring of cultural heritages for seismic vulnerability assessment and mitigation purposes*. It merges geophysical investigations and modeling, in situ measurements and multi-platforms remote sensing sensors for the non-destructive and non-invasive multi-scales monitoring of historic buildings in a seismic-prone area. In detail, the system provides: a) the long-term and the regional-scale analysis of buildings’ environment through the integration of seismogenic analysis, airborne magnetic surveys, space-borne Synthetic Aperture Radar (SAR) and multi-spectral sensors. They allow describing the sub-surface fault systems, the surface deformation processes and the land use mapping of the regional-scale area on an annual temporal span; b) the short-term and the basin-scale analysis of building’s neighborhood through geological setting and geotechnical surveys, airborne Light Detection And Radar (LiDAR) and ground-based SAR sensors. They enable assessing the site seismic effects, the built-up structural features and the surface deformation processes of the local-scale area on a monthly temporal span; c) the real- to near-real-time and building scale analysis of the heritage through proximal remotely sensing tools (e.g. terrestrial laser scanning, infrared thermal cameras and real aperture radar), combined with ambient vibration tests. They allow analyzing geometric, structural and material properties / anomalies of buildings as well as the state of conservation of structures on a real-time temporal span. The proposed approach is: Specific (it targets the cultural heritages monitoring for seismic mitigation purposes); Measurable (it provides synthetic descriptors or maps able to quantify structural and the environmental properties / anomalies / trends); Action-oriented (it provides information to plan consolidation and restoration actions for prevention activity); Relevant (it allows achieving consolidated results for cultural heritage monitoring); Time-related (it specifies when the results can be achieved). Meaningful results, obtained for the Saint Augustine Complex (XVI century) located in the historic center of the Calabrian chief town of Cosenza, are presented in terms of a web-based Geographic Information System (GIS) platform and a 3-dimensional (3D) visual software for the monitoring of environmental/urban landscapes and buildings. These tools represent the added-value products of the proposed SMART system, which allow integrating and combining multi-sensors analyses in order to support end-users involved into a cultural heritage monitoring.Copernicus MeetingsPublishedVienna | Austria | 17–22 April 20165T. Sismologia, geofisica e geologia per l'ingegneria sismic

    The MASSIMO system for the safeguarding of historic buildings in a seismic area: operationally-oriented platforms

    Get PDF
    In this paper, the non-invasive system MASSIMO is presented for the monitoring and the seismic vulnerability mitigation of the cultural heritage. It integrates ground-based, airborne and space-borne remote sensing tools with geophysical and in situ surveys to provide the multi-spatial (regional, urban and building scales) and multi-temporal (long-term, short-term, near-real-time and real-time scales) monitoring of test areas and buildings. The measurements are integrated through web-based GIS and 3D visual platforms to support decision-making stakeholders involved in urban planning and structural requalification. An application of this system is presented over the Calabria region for the town of Cosenza and a test historical complex

    The Monitoring of Urban Environments and Built-Up Structures in a Seismic Area: Web-Based GIS Mapping and 3D Visualization Tools for the Assessment of the Urban Resources

    Get PDF
    In this paper, a non-invasive infrastructural system called MASSIMO is presented for the monitoring and the seismic vulnerability mitigation of cultural heritages. It integrates ground-based, airborne and space-borne remote sensing tools with geophysical and in situ surveys to provide a multi-spatial (regional, urban and building scales) and multi-temporal (longterm, short-term and near-real-time scales) monitoring of test areas and buildings. The measurements are integrated through web-based Geographic Information System (GIS) and 3-dimensional visual platforms to support decision-making stakeholders involved in urban and structural requalification planning. An application of this system is presented over the Calabria region for the town of Cosenza and a test historical complex.The present work is supported and funded by the Italian Ministry of Education, University and Research (MIUR) under the research project PON01-02710 "MASSIMO" - "Monitoraggio in Area Sismica di SIstemi MOnumentali".Published9-134T. Sismologia, geofisica e geologia per l'ingegneria sismicaN/A or not JC

    Hyperspectral Survey Method to Detect the Titanium Dioxide Percentage in the Coatings Applied to the Cultural Heritage

    Get PDF
    Nanotechnologies provide new materials for the consolidation and protection of the Cultural Heritage: innovative solutions are represented by ethyl silicate or silica nanoparticles dispersed in aqueous colloidal suspensions mixed to titanium dioxide in nanometric form. The challenge of this work is to provide a quick and non-invasive survey method able to evaluate the titanium dioxide amount in the coatings applied on the treated stones. In fact, the titanium dioxide weight percentage incorporate into the coating depends on both application phase and, over time, environmental biological and chemical conditions. In this paper, we show the preliminary results obtained by spectroradiometric survey carried out on marble samples coated through nanoparticle films. The coatings were prepared increasing weight percentage of the titanium dioxide from 0 w% to 8 w%. The data obtained through a field hyperspectral sensors shown spectral signatures depending on the content of titanium dioxide. In fact, the samples are characterized by different spectral shapes in the wavelength range 350–400 nm, especially. The results are useful to develop a procedure for checking the application phase of coatings on the tangible Cultural Heritage. Moreover, the same method can be used, also, both to analyze the effect of the nanoparticle product on the base stone, before its application, and to verify the efficiency of the coating, over time

    Laser Scanning Investigation and Geophysical Monitoring to Characterise Cultural Heritage Current State and Threat by Traffic-Induce Vibrations: The Villa Farnesina in Rome

    No full text
    A multidisciplinary approach is often the only way to assess the state of the cultural heritage, thus involving different specialist expertise and techniques. The paper shows the paired use of terrestrial laser scanning (TLS) and geophysical monitoring (GM) to detect past effects and analyse the actual vibration levels induced by traffic on cultural heritage. The case study is the Villa Farnesina, one of the most important Renaissance buildings commissioned by the banker Agostino Chigi. The Villa contains frescoes attributed to Raphael and other famous 16th century artists, and it is located a few meters from the Lungotevere, which is one of the busiest roads in the historic centre of Rome. Testimonies report the damages caused by the construction of the embankment of the Tiber River, as well as by the traffic in the second half of the 20th century, so much so as to require requalification of the road artery. The TLS survey allows for detecting cracks and deteriorations of the frescoes, although these were subjected to restoration activities over the time, whereas the (GM) allows analysing actual vibrations induced by traffic at the different floors and outside the Villa. Although the measured vibration limits, as velocity peaks in defined frequency ranges, are below the thresholds established by international codes, the importance of the wall paintings and their already-shown susceptibility to damage suggest keeping the building under constant monitoring

    Detection of the TiO2 Concentration in the Protective Coatings for the Cultural Heritage by Means of Hyperspectral Data

    No full text
    Nanotechnology-based materials are currently being tested in the protection of cultural heritage: ethyl silicate or silica nanoparticles dispersed in aqueous colloidal suspensions mixed with titanium dioxide are used as a coating for stone materials. These coatings can play a key role against the degradation of stone materials, due to the deposit of organic matter and other contaminants on the substrate, a phenomenon that produces a greater risk for the monuments in urban areas because of the increasing atmospheric pollution. However, during the application phase, it is important to evaluate the amount of titanium dioxide in the coatings on the substrate, as it can produce a coverage effect on the asset. In this work, we present the hyperspectral data obtained through a field spectroradiometer on samples of different stone materials, which have been prepared in laboratory with an increasing weight percentage of titanium dioxide from 0 to 8 wt%. The data showed spectral signatures dependent on the content of titanium dioxide in the wavelength range 350–400 nm. Afterwards, blind tests were performed on other samples in order to evaluate the reliability of these measurements in detecting the unknown weight percentage of titanium dioxide. Moreover, an investigation was also performed on a test application of nanoparticle coatings on a stone statue located in a coastal town in Calabria (southern Italy). The results showed that the surveys can be useful for verifying the phase of application of the coating on cultural heritage structures; however, they could also be used to check the state of the coated stone directly exposed over time to atmospheric, biological and chemical agents

    Assessing soil-structure interaction during the 2016 central Italy seismic sequence (Italy): preliminary results

    No full text
    We used the moderate-magnitude aftershocks succeeding to the 2016 August 24th, Mw = 6.0, Amatrice (Italy) mainshok to asses, specially during an ongoing seismic sequence, the soil-structure interaction where cultural Heritage is involved. We have chosen as case study the San Giovanni Battista church (A.D. 1039)  in Acquasanta Terme town, about 20 Km northeast of Amatrice. First of all we studied the soil shaking features in order to characterize the input to the monument. Then, using the recordings in the church, we tried to figure out  how the input seismic energy is distributed over the different monument parts. Some preliminary results are shown and discussed
    corecore